
The Impact of Water Level and Climate Variation on Recreation Demand at Fort Cobb Reservoir

Tracy Boyer, Max Melstrom, Larry Sanders and Kangil Lee

April 9, 2015

Fort Cobb Reservoir

The Problem

- Recreators at the lake care about and value:
 - Campsites w/ hookups
 - Bathrooms/picnic shelters
 - Water quality/levels
 - Scenery

 Changing conditions at the lake affect its value

Research Objectives

• Value recreational trips to Fort Cobb Reservoir

- Relate the demand for trips to conditions at the reservoir, including:
 - Water levels
 - Air temperature
 - Precipitation

Economic Theory and Valuation

- A person's behavior/choice reveals their preferences/values
- Willingness to pay can be > 0 even if they spend zero mone
- Impaired water conditions affect behavior, reduce value

Procedures

 Estimate the demand for trips using data on visitors' trip frequency and travel costs (from on-site visitor survey)

 Relate changes in demand to changes in lake conditions using data on monthly visitation (from Tourism and Recreation Dept records)

On-Site Visitor Survey

• Conducted over two weekends in June, July

• 2-page questionnaire

• About 200 responses

Visitor Sample Summary Stats

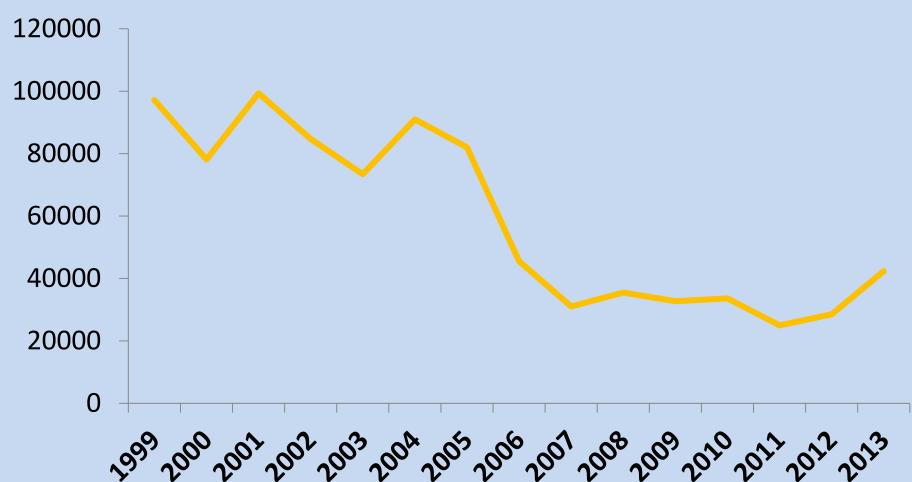
Variable	Mean	Std. Dev.	Min	Max
Visits to Fort Cobb Res.	16.57	42.71	1	480
Travel cost	91.21	108.43	0	935.97
Group size	3.30	1.80	1	10
Age	44.23	12.74	20	74
Boating	0.72	0.45	0	1
Fishing	0.72	0.45	0	1
Overnight	0.93	0.26	0	1

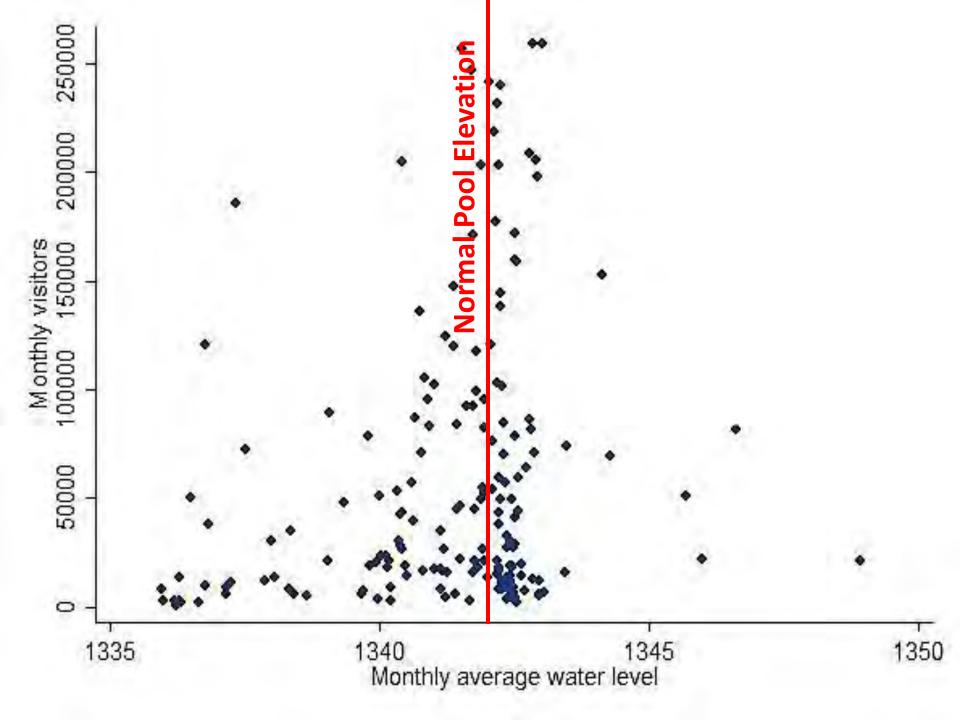
• Want to explain this decision:

 With λ_i = visitor i's total trips over 2-year period, the trip demand model is:

$$\begin{array}{l} \overset{\text{\&}}{c} b_{1} + b_{2} travel \ cost_{i} + b_{3} substitute \ cost_{i} + b_{3} \\ \vdots \\ i = \exp c b_{4} group \ size_{i} + b_{5} age_{i} + b_{6} boating_{i} + \vdots \\ \overset{\text{C}}{e} b_{7} fishing_{i} + b_{8} overnight_{i} \end{array}$$

Variable	Coefficient	Std. Error
Constant	-0.102	0.755
Travel cost	-0.007	0.003
Substitute cost	0.002	0.003
Group size	0.054	0.061
Age	0.013	0.010
Boating	0.932	0.315
Fishing	-0.102	0.755
Overnight	0.479	0.262

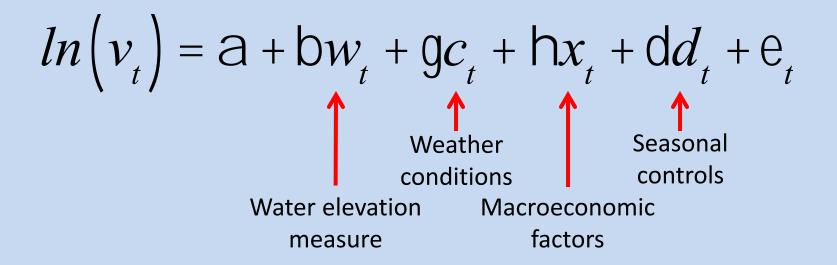

Variable	Coefficient	Std. Error
Constant	-0.102	0.755
Travel cost	-0.007	0.003
Substitute cost	0.002	0.003
Group size	0.054	0.061
Age	0.013	0.010
Boating	0.932	0.315
Fishing	-0.102	0.755
Overnight	0.479	0.262


• Willingness to pay estimates:

Trip welfare measure	Sample Average	95% Confidence Interval
WTP/visiting group	\$150	\$67 - \$647
WTP/visitor	\$61	\$27 - \$257
WTP/visitor/day	\$18	\$8 - \$72

Average Monthly Visitors to the Reservoir

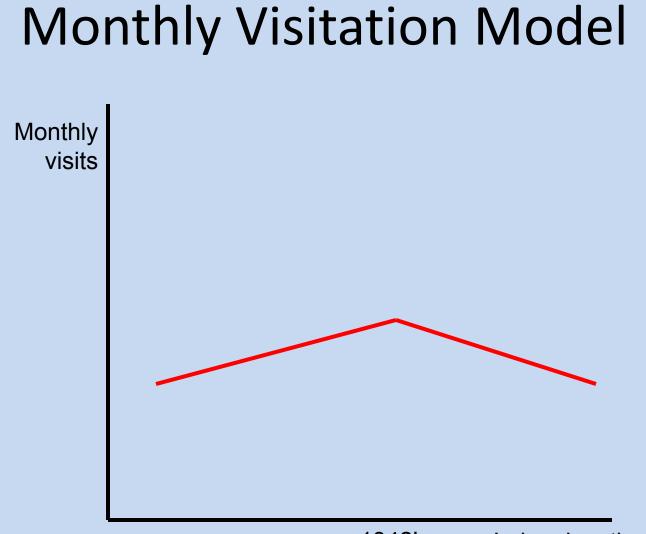
• Want to explain this:



Monthly Data Summary Stats

Variable	Mean	Std. Dev.	Min	Max
Visits	58,254	65,072	879	259392
Water Level	1341.15	2.10	1335.94	1348.90
Temperature	55.14	14.88	26.44	83.39
Rainfall	0.07	0.07	0.00	0.39
Wind speed	9.85	1.52	6.71	14.36
Unemployment	4.84	1.12	2.80	7.20
Gas price	2.35	0.91	0.92	4.03

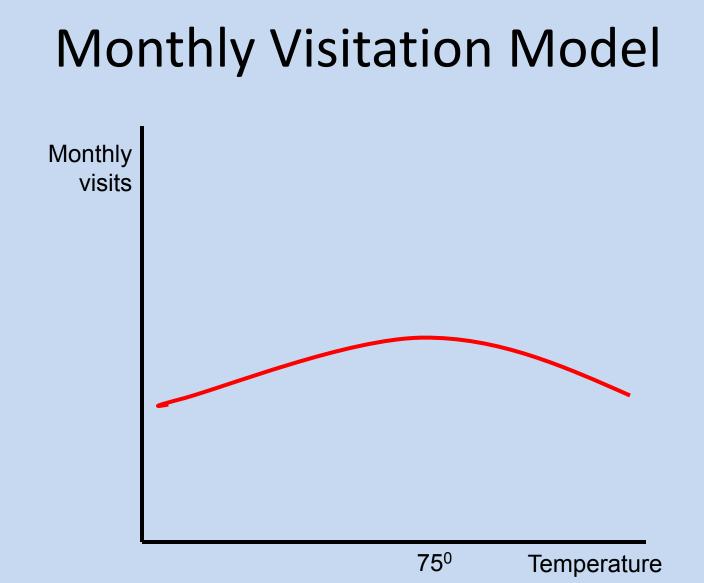
 With v_t = total visitors in month t, the monthly visitation model is:



Variable	Coefficient	Std. Error
Dif. from normal	-0.054*	0.032
Temperature	0.142*	0.033
Temperature squared	-0.001*	0.000
Rainfall	0.006	0.498
Wind speed	-0.008	0.037
OK Unemployment rate	0.012	0.048
Gas price	-0.117	0.120
Constant	6.355 *	0.912
Year trend	-0.084*	0.030

Seasonal controls (month dummies) not shown

Variable	Coefficient	Std. Error
Dif. from normal	-0.054*	0.032
Temperature	0.142*	0.033
Temperature squared	-0.001*	0.000
Rainfall	0.006	0.498
Wind speed	-0.008	0.037
OK Unemployment rate	0.012	0.048
Gas price	-0.117	0.120
Constant	6.355 *	0.912
Year trend	-0.084*	0.030


Seasonal controls (month dummies) not shown

1342' Lake elevation

Variable	Coefficient	Std. Error
Dif. from normal	-0.054*	0.032
Temperature	0.142*	0.033
Temperature squared	-0.001*	0.000
Rainfall	0.006	0.498
Wind speed	-0.008	0.037
OK Unemployment rate	0.012	0.048
Gas price	-0.117	0.120
Constant	6.355*	0.912
Year trend	-0.084*	0.030

Seasonal controls (month dummies) not shown

Variable	Coefficient	Std. Error
Dif. from normal	-0.054*	0.032
Temperature	0.142*	0.033
Temperature squared	-0.001*	0.000
Rainfall	0.006	0.498
Wind speed	-0.008	0.037
OK Unemployment rate	0.012	0.048
Gas price	-0.117	0.120
Constant	6.355 *	0.912
Year trend	-0.084*	0.030

Seasonal controls (month dummies) not shown

• Some predictions from the model:

Scenario	Change in Monthly Visits
1 ft lake level change from normal elevation	-3095
1 deg. increase from sample avg. temperature	1693
1 deg. increase from 80 deg.	-1266


Conclusion

- On average, the value of a visit is about \$60
- Visitation increase with temperature, except when it is already hot
- Other weather factors do not affect visitation
- Visitation decreases when water elevation moves away from normal pool height

Next Steps

 Link trip intensity and visitation to water quality measures

 Measure economic benefits improved water quality to non-users

Acknowledgements

- USDA National Integrated Water Quality Program
- Oklahoma Agricultural Experiment Station
- Lowell Caneday
- Azaz Zaman

